
A note on `Dasst' package for working with

`dssat-csm' �les

Homero Lozza

September 9, 2024

1 Introduction

The `dssat-csm' [1] writes many of its variable values in text �les using �xed
width format (fwf). These �les typically have .OUT extension. In addition,
input data must also be formatted in columns of �xed width [2].

The Dasst package provides `dssat' users with methods for easy accessing
the values on `dssat' �les. It enables simulated treatments to be prepared and
studied with numerous tools available inR for statistical and graphical analyses.

2 Processing a .OUT �le

The �rst step is to read the required .OUT �le and to store it in memory as
an S4 object of class Dasst. We delivered some example �les on the extdata

directory of the Dasst installation. In order to perform the following examples,
we will read the PlantGro.OUT �le which contains the daily plant growth for 3
treatments repeated over 10 years. Runs ranging from 1 to 10 have plant output
data for treatment 1 which simulates the growth of a maize from 1970 to 1979
(south hemisphere). Treatment 2 is analogous to the previous one, but adds a
fertilization with 50kg/ha of urea. Lastly, treatment 3 adds a fertilization with
100kg/ha of urea.

The read.dssat function can be invoked passing a vector of characters with
the �le name/names to be opened. Also other arguments are accepted to restrict
the number of �elds to be retrieved. See help for more details.

> library(Dasst)

> dssatfile <- system.file("extdata","PlantGro.OUT",

package="Dasst")

> plantgro <- read.dssat(dssatfile)

The same data set is available and can be load by means of

> data(plantGrowth)

1

The S4 object stores internally the values immediately bellow each header
line of the text �le as a data.frame. Each data.frame is identi�ed with a table.

> length(plantGrowth)

[1] 30

In this case, we count with 30 tables. This means that this was the number
of headers found in the text �le.

The show method displays the contents of the �rst table stored in an object
of class Dasst. The summary method gives a brief report of the information stored
in the Dasst object, and gives the number of �elds and records for each table.

> summary(plantGrowth)

* Object of class = Dasst

* Files = 1

* Sections = 30

* Tables = 30

Table 1 : 45 fields and 131 records

Table 2 : 45 fields and 112 records

Table 3 : 45 fields and 124 records

Table 4 : 45 fields and 133 records

Table 5 : 45 fields and 129 records

Table 6 : 45 fields and 122 records

Table 7 : 45 fields and 127 records

Table 8 : 45 fields and 120 records

Table 9 : 45 fields and 117 records

Table 10 : 45 fields and 123 records

... Print limited to the first 10 tables.

* Total records = 3714

Each table contents is accessed by the [[method. Speci�c values can be set
by rows, column names, or a combination of both. For example, the value for
the "YEAR" �eld on row 1 corresponding to table 1 is

> plantGrowth[[1]][1,"YEAR"]

[1] 1970

The table orders are suitable for performing operations, and we can �nd
them searching for patterns within the �lename, section and/or header parts
belonging to each table. Also, we can print a brief summary of the results.

> nrun <- searchAncillary(plantGrowth, secKey="run[[:space:]]*3",

ignore.case=TRUE)

> nrun

2

[1] 3 30

> getAncillary(plantGrowth, nrun)

* Showing ancillary data for selected table orders:

Orders: Files: Sections: Columns:

3 PlantGro.OUT *RUN 3 ... YEAR DOY DAS DA ...

30 PlantGro.OUT *RUN 30 ... YEAR DOY DAS DA ...

For more, ancillary_object[[<name>]]; <name>: orders|files|sections|columns.

2.1 Dates processing

The conversion from year (YEAR) and day of the year (DOY) is perform by
addDate<- method. It stores dates as Date objects in a new column named
date_YEAR_DOY.

> addDate(plantGrowth) <- ~ YEAR + DOY

> plantGrowth[[1]][1:3,c("YEAR","DOY","date_YEAR_DOY")]

YEAR DOY date_YEAR_DOY

1 1970 288 1970-10-15

2 1970 289 1970-10-16

3 1970 290 1970-10-17

This turns very simply the sketch of evolution curves.

> plot(plantGrowth[[1]][,"date_YEAR_DOY"],plantGrowth[[1]][,"LAID"])

2.2 Mean operation

Several operations can be performed over the whole data set or restricted to a
subset. We could be interested on computing the mean, variance, maximum, or
minimum values per treatment. In the following example, we will compute the
mean values of stem, leaf and grain weight for each day after planting (DAP) for
treatment 1 that spans runs from 1 to 10:

> from01to10 <- gatherTables(plantGrowth[1:10], c("DAP"),

c("SWAD","LWAD","GWAD"), mean)

> lastRow <- nrow(from01to10)

> from01to10[(lastRow-5):lastRow,]

DAP SWAD LWAD GWAD

107 106 2223.9 2111.8 3300.8

108 107 2194.1 2111.8 3422.9

109 108 2172.7 2111.8 3529.8

110 109 2151.5 2111.8 3633.4

111 110 2124.7 2111.8 3735.7

112 111 2095.9 2111.8 3839.1

3

Nov Dec Jan Feb

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

plantGrowth[[1]][, "date_YEAR_DOY"]

pl
an

tG
ro

w
th

[[1
]][

, "
LA

ID
"]

Figure 1: Daily evolution of LAID.

The result is stored in a data.frame which can be manipulated and plotted
with standard tools:

> plot(SWAD + LWAD + GWAD ~ DAP, data=from01to10)

4

0 20 40 60 80 100

0
20

00
40

00
60

00
80

00

DAP

S
W

A
D

 +
 L

W
A

D
 +

 G
W

A
D

Figure 2: Mean daily evolution of the sum of stem, leaf and grain weight.

5

2.3 Yield plots

Yield may be retrieved from the last row for each run of the PlantGro.OUT

�le. However, we will read the Summary.OUT �le available from the extdata

directory in the Dasst installation.

> smmyfile <- system.file("extdata", "Summary.OUT", package="Dasst")

> smmy <- read.dssat(smmyfile)

> summary(smmy)

* Object of class = Dasst

* Files = 1

* Sections = 1

* Tables = 1

Table 1 : 52 fields and 30 records

* Total records = 30

From the summary information we notice that the smmy object contains only
30 records gather in table 1. This corresponds to the 10 years of simulations for
each of the 3 treatments simulated.

> boxplot(HWAM ~ TRNO, data=smmy[[1]])

6

1 2 3

40
00

50
00

60
00

70
00

80
00

90
00

TRNO

H
W

A
M

Figure 3: Yield box plot. Treatments; 1: without fertilization, 2: with 50kg/ha
of urea, 3: with 100kg/ha of urea.

7

3 Stacking �les

On certain occasions, you could be interested in time series that span across
several tables. For example, when `dssat-csm' is executed in sequence mode,
soil water values corresponding to the N run go on N+1 run. Here, we will
address the generation of time series from .WTH �les.

We will read the .WTH �les available from the extdata directory in the Dasst

installation.

> wthPath <- paste(find.package("Dasst"),"extdata",sep="/")

> wthFiles <- list.files(path=wthPath, pattern="WTH",

full.names=TRUE)

> wth <- read.dssat(wthFiles)

> summary(wth)

* Object of class = Dasst

* Files = 11

* Sections = 1

* Tables = 22

Table 1 : 8 fields and 1 records

Table 2 : 5 fields and 365 records

Table 3 : 8 fields and 1 records

Table 4 : 5 fields and 365 records

Table 5 : 8 fields and 1 records

Table 6 : 5 fields and 366 records

Table 7 : 8 fields and 1 records

Table 8 : 5 fields and 365 records

Table 9 : 8 fields and 1 records

Table 10 : 5 fields and 365 records

... Print limited to the first 10 tables.

* Total records = 4029

From the summary information we notice that the wth object contains 22
tables. We found 365 or 366 records on half of them according to the year.
Interestingly, the small tables with only 1 record stores the climatic information
which in the .WTH �les looks like

INSI LAT LONG ELEV TAV AMP TMHT WMHT

-34.071 -60.304 -99 16.5 12.0 2.0 -99

In order to obtain the full time series, we will stack only the even table
numbers

> wthSeries <- stackTables(wth[seq(from=2, to=22, by=2)])

The result is available as data.frame.

> plot(TMAX ~ as.Date(as.character(DATE),format="%y%j"),

wthSeries)

8

1970 1975 1980

10
20

30
40

as.Date(as.character(DATE), format = "%y%j")

T
M

A
X

Figure 4: Daily maximum temperature series.

4 Input �le edition

This section gives a brief idea of the potential of write.dssat method for the
edition of dssat-csm input �les. Further details can be found in other vignette
aimed at automatic calibration and optimization of `dssat-csm' input �les.

We will read the experimental �le SANT7001.MZX and we will replace the
fertilization doses. Because this �le will be replaced, we make a copy on a
temporary directory.

> santfile <- system.file("extdata", "SANT7001.MZX",

package="Dasst")

> ffn <- paste(tempdir(), "SANT7001.MZX", sep="/")

> file.copy(santfile, ffn)

[1] TRUE

> sant <- read.dssat(ffn)

> sant[[9]]

9

F FDATE FMCD FACD FDEP FAMN FAMP FAMK FAMC FAMO FOCD FERNAME

1 1 70288 FE005 AP003 10 50 0 0 0 0 -99 -99

2 2 70288 FE005 AP003 10 100 0 0 0 0 -99 -99

> sant[[9]][,"FAMN"] <- c(60,120)

> sant[[9]]

F FDATE FMCD FACD FDEP FAMN FAMP FAMK FAMC FAMO FOCD FERNAME

1 1 70288 FE005 AP003 10 60 0 0 0 0 -99 -99

2 2 70288 FE005 AP003 10 120 0 0 0 0 -99 -99

> write.dssat(sant, ffn)

The SANT7001.MZX was rewritten and the original �le was saved as SANT7001.MZX.bak.

5 Known issues

Sections that do not contain values are skipped, and there will not be tables
representing these names. Moreover, comments are also skipped and will not be
found in their corresponding �les if write.dssat method is applied. In addition,
some details that may be found between the section name and the variables
header will be skipped. In general, verbose reduction does not a�ect the program
behavior because merely comments are erased.

The column widths are computed from the space reserved in header lines for
each �eld. Each variable header is assumed to be right justi�ed. The column
widths are computed as the number of characters (including blanks) spanning
from the last character of the previous word up to the end of the following
variable name. Thus, header lines containing variable names with spaces in
between are misunderstand. Eventually, headers from such a �le should be
edited and spaces should be replaced by underscores.

The type of value is detected automatically. Fields are assumed numeric if
only �gures, dots, pluses or minuses are found. Otherwise they are considered
as a character strings. Sometimes, the columns for character �elds are left
justi�ed. This adds some di�culties in the column width detection. To �x
some misalignment, extend the variable name with underscores up to one space
before the beginning of the following column header.

6 Conclusion

In conclusion, this package tends to simplify the post processing of `dssat'
simulated values stored in .OUT �les o�ering methods that expose these data as
belonging to a collection of data.frame objects that can be thought like tables.

10

References

[1] Jones, J.W., G. Hoogenboom, C.H. Porter, K.J. Boote, W.D. Batchelor,
L.A. Hunt, P.W. Wilkens, U. Singh, A.J. Gijsman, and J.T. Ritchie. 2003.
DSSAT Cropping System Model. European Journal of Agronomy 18:235-
265

[2] G.Y. Tsuji, G. Uehara and S. Balas (eds.). 1994. DSSAT v3 (Volume 2).
University of Hawaii, Honolulu, Hawaii.

11

	Introduction
	Processing a .OUT file
	Dates processing
	Mean operation
	Yield plots

	Stacking files
	Input file edition
	Known issues
	Conclusion

